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Abstract. Coulomb repulsion is taken into account to derive the thermodynamics of charged
bosons in a random external potential. A simple analytical form of the partition function is
proposed for the case of non-overlapping localized states (i.e. a small amount of disorder). The
density of localized bosons and the specific heat show a peculiar non-uniform temperature
dependence below the Bose–Einstein condensation temperature. The superfluid–Bose-glass
phase diagram is discussed. A new phase is predicted which is a Bose glass atT = 0 but
a superfluid at finiteT .

1. Introduction

The charged Bose gas (CBG), being an important reference system of quantum statistics,
has become of particular physical interest in the field of high-temperature superconductivity
[1]. A long time ago Schafroth [2] demonstrated that an ideal gas of charged bosons exhibits
the Meissner–Ochsenfeld effect below the ideal Bose-gas condensation temperature. Later,
the one-particle excitation spectrum atT = 0 was calculated by Foldy [3] who worked
at zero temperature using the Bogoliubov [4] approach. The Bogoliubov method leads to
the result that the elementary excitations of the system have, for small momenta, energies
characteristic of plasma oscillations which pass over smoothly for large momenta to the
energies characteristic of single-particle excitations. Further investigations have been carried
out at or nearTc, the transition temperature for the gas; these have been concerned with the
critical exponents [5] and the change in the transition temperature from that of the ideal gas
[6, 5]. The RPA dielectric response function and screening in a CBG have been studied in
the high-density limit [7, 8]. The theory of the CBG beyond the lowest-order Bogoliubov
approximation was discussed by Lee and Feenberg [9] and by Brueckner [10], both of
whom obtained the next-order correction to the ground-state energy. Woo and Ma [11]
calculated numerically the correction to the Bogoliubov excitation spectrum. Alexandrov
[12] found the critical magnetic fieldHc2(T ) at which the CBG is condensed; the predicted
temperature dependence ofHc2 was observed both in low-Tc and high-Tc cuprates, in which
the coherence volume estimated from the heat capacity measurements is comparable with
or even less than the unit-cell volume.

The doped Mott insulators are intrinsically disordered. Hence, the localization of carriers
in a random potential plays a crucial role in their low-temperature thermodynamics and
transport properties. As an example, if a fraction of bipolarons are localized by disorder
and the Coulomb repulsion in localized states is sufficiently strong, then the number of
delocalized bosons is proportional toT while the boson–boson inelastic scattering rate
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is proportional toT 2; this can explain both the linear temperature dependence of the in-
plane resistivity and the Hall density observed in the cuprates [1]. The picture of interacting
bosons with a short-range interaction filling up all localized single-particle states in a random
potential and Bose condensing into the first extended state is known in the literature [13–
15]. To calculate the density of localized bosons one has to take into account the repulsion
between them. One cannot ignore the fact that the localization lengthξ generally varies
with energy and diverges at the mobility edge. One would expect the number ofhard-
core bosons in a localized state near the mobility edge to diverge in a similar way to the
localization length. Therefore only a repulsive interaction can stop all particles condensing
into the lowest localized state. Thus, as stressed by Fisheret al [15], there is no sensible
non-interacting starting point in the Bose gas about which to perturb (in contrast to the case
for Fermi gas).

The scaling analysis of neutral bosons in random potentials by Fisheret al [15]
describes the Bose-glass–superfluid phase transition at zero temperature with increasing
density and (or) hopping strength. However, the analysis is limited to the critical region
near the transition and predicts [16] the universal resistanceR∗ at the Mott insulator-to-
superconductor transition (in two dimensions) while data [17] on amorphous films suggest
a wide range ofR∗. Simple analytically solvable models of interacting bosons in a random
potential might therefore be helpful. Lee and Gunn [18] proposed a picture of neutral
bosons in which the ‘true’ extended Bose condensate coexists with bosons in localized
states. In this paper we develop a similar model for charged bosons interacting via Coulomb
forces.

The number ofchargedbosons in a single potential well is determined by the competition
between the long-range Coulomb potential energy'4e2/ε0ξ and the binding energyEc−E,
whereε0 is the background dielectric constant andEc is the mobility edge. If the Coulomb
interaction is strong and the localization lengthξ diverges asξ ∝ (Ec − E)−ν with ν < 1,
then each potential well cannot contain more than one boson [1]. Within this approximation
the localized bosons obey Fermi–Dirac statistics because Coulomb repulsion has the same
effect as the Pauli exclusion principle. In the extreme case of the hydrogen atom the average
electron–nucleus distance is inversely proportional to the binding energy, i.e.ν = 1. The
hydrogen negative ion exists but with rather low electron affinity, so the doubly charged
negative ion H2− exists only as a resonant state. However, in general, the exponentν can
be larger than unity and the Coulomb repulsion is not infinite, so the statistics of localized
charged bosons is neither Bose nor Fermi.

In this paper we study the parastatistics of partly localized charged bosons in the
superfluid phase. In this phase the chemical potentialµ is exactly at the mobility edge,
µ = Ec. We assume that the density of bosonsn is not very high or the dimensionality is
reduced, so the localized states are not completely screened out (as in the case of the Mott
transition in semiconductors). For a 3D system that means that the dimensionless strength of
the Coulomb repulsion should be about unity or larger,rs = 4me2/ε0(4πn/3)1/3 > 1 where
m is the boson mass and we take ¯h = 1. At the same time the density should not be extremely
low if delocalized bosons are in a superfluid phase. A rather large magnitude ofrs � 1 is
necessary for the Wigner crystallization of charged carriers. Therefore, the above condition
takes place practically over the whole relevant region of the carrier density. Moreover in
reduced dimensions, relevant for cuprates, the localized states cannot be screened out even
if rs 6 1, and forrs > 1 the localization lengthξ is essentially unaffected by delocalized
bosons or the Bogoliubov collective mode. Hence our picture suggests that some particles
remain in localized states while others are in the ‘true’ extended Bose condensate; for neutral
bosons this picture has been justified by Lee and Gunn [18].
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2. The partition function of localized charged bosons

The Hamiltonian of charged bosons on an oppositely charged background (to ensure charge
neutrality) in an external random field with the potentialU(r) is given by

H =
∫

dr ψ†(r)

[
−∇

2

2m
− µ+ U(r)

]
ψ(r)

+ 1

2

∫
dr
∫

dr′ V (r − r′)ψ†(r)ψ(r)ψ†(r′)ψ(r′). (1)

The Fourier component of the Coulomb potential for the bosonic charge 2e is V (k) =
16πe2/ε0k

2 in a 3D system, andV (k) = 8πe2/ε0k in a 2D system with a three-dimensional
interaction. For a low amount of disorder a single-particle spectrum consists of localized
discrete levels below the bottom of the conduction bandEc. At some finite temperature,
Tc, bosons are condensed atE = Ec, so µ = Ec. If the Coulomb repulsion is strong
one can expect that each localized state belowEc is occupied by one or a few bosons.
The excitation spectrum of the delocalized charged superfluid has a gap of the order of
the plasma frequency [3]. Therefore the low-temperature thermodynamics is controlled by
the excitation of the shallow localized states while the Bogoliubov collective modes can be
ignored. In 3D their contribution is exponentially small while in 2D their energy scales as
T 5 and the specific heat asT 4. Even in the case of a short-range repulsion the sound modes
yield an energy proportional toT d+1 and hence a specific heat which behaves likeC ∝ T d
(whered stands for the dimensionality) [15]. Therefore the contribution to thermodynamics
from the delocalized bosons appears to be negligible at low temperatures compared with
that from bosons localized in shallow potential wells ford > 2. So in the following we
calculate the partition function and specific heat of localized bosons only.

When two or more charged bosons are in a single localized state of energyE there
may be significant Coulomb energy and we try to take this into account as follows. The
localization lengthξ is assumed to depend onE via

ξ ∼ 1

(−E)ν (2)

whereν > 0. The Coulomb energy ofp charged bosons confined within a radiusξ can be
expected to be of order

p(p − 1)e2

ε0ξ
. (3)

Thus the total energyw of p bosons in a localized state of energyE is taken to be

w = pE + p(p − 1)κ(−E)ν (4)

whereκ > 0. Hence, as mentioned above, we see that the behaviour of charged bosons
in localized states can be thought of as intermediate between Bose–Einstein statistics and
Fermi–Dirac statistics. Whenκ = 0 we have an equally spaced set of levels, i.e. Bose–
Einstein behaviour, whereas whenκ = ∞ we have Fermi–Dirac behaviour since the only
levels with finite energy arep = 0 andp = 1, and thus an exclusion principle is enforced.
When 0< κ <∞ we have the intermediate ‘parastatistics’ that the level spacingδw→∞
asp→∞. This behaviour is closely analogous to that observed in the Coulomb blockade
model which applies to quantum dots [19].

We are primarily interested in the properties of the superconducting phase, namely the
phase in which a true (extended) Bose condensate is present. The only state in which the
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true condensate can form is the lowest-energy delocalized stateEc. Hence, when there is a
Bose condensate, the chemical potentialµ must be equal to zero if we chooseEc = 0.

We take the total energy of a set of charged bosons in localized states to be the sum
of the energies of the bosons in the individual potential wells. The partition functionZ for
such a system is then the product of the partition functionsz for each of the wells, and the
system free energyF = kBT lnZ is simply the sum of the individual free energieskBT ln z.
Hence it makes sense to study the partition function for one localized state of energyE on
its own. The free energy of all localized bosons is then given by

F = kBT
∫ 0

−∞
dE ρL(E) ln z(E) (5)

whereρL(E) is the one-particle density of localized states below the mobility edge.
There is an important reference case when the temperature dependence of the specific

heat can be readily established; this occurs whenν = 1 andµ = 0. In that case the repulsive
Coulomb energy scales asE, equation (4). By introducingE/kBT as a new variable in the
integral, equation (5), and assuming that the density of statesρL is energy independent in
the region of orderT/κ below the mobility edge, one obtains

C = −T ∂
2F

∂T 2
∝ T . (6)

In the general caseν 6= 1 and (or)ρL not energy independent the specific heat has a non-
linear temperature dependence. In this paper we study the case of a low level of doping
whenρL(ε) = nLδ(E−ε) wherenL is the number of impurity wells with only one localized
level in each of them.

Figure 1. A graph of(w − pµ)/[κ(−ε)ν ] againstp.

3. Charged bosons in a single localized state

We focus on the properties of a single localized stateε. The probability for the state
to containp bosons is proportional to e−β(w−pµ) whereµ is the chemical potential and
β ≡ 1/kBT . (We shall retain the possibility of a non-zero chemical potential until it starts
to complicate the equations.) We can re-expressw − pµ as

w − pµ = κ(−ε)ν(p − p0)
2− κ(−ε)νp2

0 (7)
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(a)

(b)

Figure 2. The mean occupancy〈p〉 as a function ofp0 and log10 {kBT /[κ(−ε)ν ]}. (a) The full
3D plot. (b) 〈p〉 versus log10 {kBT /[κ(−ε)ν ]} for selected values ofp0.

where

p0 = 1

2
+ µ− ε

2κ(−ε)ν . (8)
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Figure 1 shows a graph of(w − pµ)/[κ(−ε)ν ] as a function ofp. The partition function
z(ε) for such a single localized state is

z(ε) =
∞∑
p=0

e−β(w−pµ) (9)

or

z(ε) = ep
2
0βκ(−ε)ν

∞∑
p=0

e−βκ(−ε)
ν (p−p0)

2
. (10)

The partition function is thus completely determined by the dimensionless parametersp0

andkBT /[κ(−ε)ν ]. The mean occupancy〈p〉 is

〈p〉 = kBT ∂ ln z(ε)

∂µ
(11)

and, whenµ = 0, the specific heat capacityc is

c = β2∂
2 ln z(ε)

∂β2
. (12)

For truncation of the series at 100 terms, the calculated values of these quantities are shown
in figures 2 and 3. We now attempt to understand these results in more detail, looking
separately at each temperature range.

(i) kBT � κ(−ε)ν . At low temperatures the partition function is dominated by the term
with p closest top0, i.e. the value ofp giving the lowest value ofw−pµ, and so the mean
occupancy〈p〉 is an integer and goes up in steps asp0 increases, as seen in figure 2(a).
The changeover in dominance from one term to another occurs whenp0 is a half-integer,
at which point the lowest two energy states are degenerate.

So long as one term dominates the partition function, the specific heat capacityc will be
close to zero. However, whenp0 is close to a half-integer we have a two-level system and
a corresponding Schottky anomaly in the specific heat capacity. This is seen in figure 3(a):
c is zero whenp0 is equal to a half-integer and rises to a maximum on either side, when the
level separation is∼kBT . Hence, at fixedkBT /[κ(−εν)], the low-temperature specific heat
capacity (i.e.kBT � p2

0κ(−ε)ν) is periodic inp0. We also note from figure 3 that the peak
in the specific heat capacity rises to a maximum whenp0 is an integer. This is because the
lowest energy level is the only non-degenerate level, all others being in degenerate pairs;
hence, at low temperature, we effectively have a two-level system in which the upper level
is a degenerate pair, thus resulting in a larger peak inc than occurs in an ordinary two-level
system.

(ii) kBT > κ(−ε)ν . We can approximate the sum by an integral:

z(ε) ≈ ep
2
0βκ(−ε)ν

∫ ∞
0

dp e−βκ(−ε)
ν (p−p0)

2
. (13)

(a) κ(−ε)ν < kBT < p2
0κ(−ε)ν . In this case we can approximate the lower limit of the

integral as−∞, i.e. the partition function can be approximated by an untruncated gaussian,
and is therefore approximately symmetrical aboutp0. Hence, in this temperature range we
have

〈p〉 ≈ p0 (14)

as is clearly seen in figures 2(a) and 2(b).
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(a)

(b)

Figure 3. The specific heat capacityc as a function ofp0 and log10 {kBT /[κ(−ε)ν ]}. (a) The
full 3D plot. (b) c versus log10 {kBT /[κ(−ε)ν ]} for selected values ofp0: 3.0, 3.2, 3.3, 3.4,
3.48 and 3.5. At low temperatures,c is approximately invariant underp0→ p0 ± 1 and under
p0→ n− p0 wheren is any integer greater thanp0.

After integration, the partition function becomes

z(ε) ≈ eβp
2
0(κ−ε)ν

√
πkBT

κ(−ε)ν (15)

from which we obtain that

c ≈ 1

2
kB. (16)
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This result is another example of the equipartition theorem of classical statistical mechanics
and arises simply becausew is proportional to the square of a coordinate, namelyp − p0.
In figure 3(b) the effect of this result is seen in the region aroundkBT ≈ κ(−ε)ν .

(b) kBT > κ(−ε)ν andkBT � p2
0κ(−ε)ν . In this case we can make the approximation

that ∫ p0

0
dp e−βκ(−ε)

ν (p−p0)
2 ≈ p0 (17)

and so the partition function becomes

z ≈ p0+ 1

2

√
πkBT

κ(−ε)ν . (18)

As a consequence, the mean occupancy〈p〉 becomes proportional to the square root of
temperature:

〈p〉 ≈
√

kBT

πκ(−ε)ν (19)

and this gives rise to the increase in〈p〉 at large temperatures seen in figure 2. Once again,
the specific heat capacityc ≈ 1

2kB , as seen in figure 3.

4. The Bose-glass–superfluid transition

Here we assume that all the localized states have the same value ofε and derive the
conditions for the Bose condensate to occur. The most startling conclusion is that, in
particular circumstances, it is possible to take a system in which there is no Bose condensate
and create one by raising the temperature.

Figure 4. The dependence of the possibility for Bose condensate formation onn/nL andp0.
In the shaded regions, no Bose condensate can exist atT = 0, but as the temperature is raised
a condensate may form depending on the value ofn

2/3
L kBTc0/[κ(−ε)ν ].

If the delocalized bosons are treated as being free particles of spin 0 and massm, then
at temperatureT and whenµ = 0, the number of delocalized bosons per unit cell of volume
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� is (
T

Tc0

)3/2

where

kBTc0 = 3.3125
h̄2

m

(
1

�

)2/3

. (20)

If there arenL localized states in each unit cell and the mean occupancy of each state is
〈p〉, then the number of localized bosons per unit cell is

nL〈p〉.
If there aren bosons, in total, per unit cell, then the number of bosons in the Bose condensate
is

n− nL〈p〉 −
(
T

Tc0

)3/2

and the temperature of the phase transitionTc is found by solving

n− nL〈p〉 −
(
Tc

Tc0

)3/2

= 0. (21)

However, as we have seen,〈p〉 is in general a function ofT and so solving this equation
is not trivial. Nevertheless we can make some simple observations about the conditions
necessary for a Bose condensate to occur. Figure 4 summarizes the conclusions.

Whenp0 is just above an integer valuep−, 〈p〉 increases monotonically with temperature
(as in figure 2(b)); we then have two possibilities.

(i) n < nLp−. No Bose condensate occurs at any temperature.
(ii) n > nLp−. In this case equation (21) has one solution, being the temperature above

which the Bose condensate disappears.

Whenp0 is just below an integer valuep+, on the other hand,〈p〉 no longer increases
monotonically with temperature (again, see figure 2(b)); rather, asT increases above zero
〈p〉 falls from p+ to p0 before rising back up again. Now we can distinguish three cases.

(i) n < nLp0. No Bose condensate occurs at any temperature.
(ii) n > nLp+. At T = 0 the Bose condensate is present, but disappears as the

temperature is raised.
(iii) nLp0 < n < nLp+. This is more complicated. AtT = 0 the Bose condensate is

absent. If

kBTc0 <∼ κ(−ε)ν
n

2/3
L

then the Bose condensate will be absent at all temperatures. If, on the other hand,

kBTc0 >∼ κ(−ε)ν
n

2/3
L

then a Bose condensate will appear at a temperaturekBT ∼ κ(−ε)ν and disappear as the
temperature is raised further.
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5. Conclusion

We have formulated the statistics of charged bosons partly localized by impurities. A simple
form of the partition function is proposed by the use of a reasonable scaling of the Coulomb
energy with the localization length. A non-uniform dependence of the specific heat of the
partly localized charged superfluid is found at low temperatures which strongly depends on
the exponentν of the localization length. The Bose-glass–superfluid transition is analysed
(figure 4) as a function of the ration/nL and the Coulomb interaction as characterized by
the parameterp0. A new phase is found, which is a Bose glass atT = 0 but a superfluid
at finite temperatures.

We believe that our findings are relevant for doped high-Tc cuprates having many
properties reminiscent of the charged Bose liquid [1]. Because the level of doping of these
Mott–Hubbard insulators is high, one can expectρL(E) to vary smoothly with energyE
(rather than having spikes corresponding to discrete levels). In that case our approach leads
to a non-linear temperature dependence of the specific heat at low temperatures ifν 6= 1.
From a preliminary analysis, the experimental observation ofC ∝ T 1−δ in superconducting
La2−xSrxCuO4 [20] appears to be consistent with the existence of bosons partly localized
by disorder.
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